
Non-Colluding Attacks Identification in Distributed
Computing

Arnav Solanki, Martina Cardone, Soheil Mohajer
University of Minnesota, Minneapolis, MN 55404, USA

Email: {solan053, cardo089, soheil}@umn.edu

Abstract—This paper studies a distributed computing setting
in which the computing task consists of multiplying a matrix
by a vector. A number of worker machines are attacked, i.e.,
the result of their computation is maliciously perturbed by
some adversaries. In particular, the focus is on the case where
these adversaries are non-colluding and non-communicating and
hence they cannot jointly perturb the results of all the attacked
worker machines. First, a condition that ensures that the result
of the computing task can be successfully recovered with high
probability is derived as a function of the setting parameters.
Then, a probabilistic mechanism inspired by group testing is
proposed to identify the set of the attacked worker machines,
and the corresponding probability of error is derived.

I. INTRODUCTION

Today, datasets have reached overwhelming sizes and com-
plexities, which make them difficult to be processed using
traditional approaches. Distributed computing embraces the
idea of parallelizing the computations to enable large-scale
data processing. The effort of a computing task over these
massive and complex datasets can indeed be distributed by
assigning sub-tasks across a network of worker machines that
operate in parallel. A critical aspect in the design of modern
distributed computing systems concerns the security of the
computation process. With the ever-growing computational
power at our disposal, these systems are indeed susceptible
to different types of message tampering attacks, in which an
adversary (e.g., virus) might maliciously perturb the results
computed by some worker machines.

In this paper, we consider a distributed computing setting
in which the task consists of multiplying a matrix by a
vector. We assume that some of the worker machines are
attacked, i.e., the result of their computation is maliciously
perturbed. In particular, we focus on a scenario where the
worker machines are geographically distributed, and belong
to different systems. For such a scenario, it is reasonable to
assume that adversaries attacking different worker machines
are non-colluding/non-communicating. As such, they cannot
jointly perturb the results of all the attacked worker machines.

This scenario is different from the setting recently analyzed
in [1], which assumes attackers that collaborate in perturb-
ing the results computed by several worker machines. The
assumption of non-colluding/non-communicating adversaries
finds applicability in the context of online crowdsourcing [2],
[3], where it can be difficult to ensure high-quality and
reliable results from the entire large pool of Internet users.

M. Cardone was supported in part by the U.S. National Science Founda-
tion under Grant CCF-1849757.

We first derive a condition under which, with the assumed
data perturbation and employed technique of distributing the
data, it is guaranteed that the master node can successfully
recover the result of the computing task with high probability.
This condition is k < n−ℓ, where n is the number of worker
machines, ℓ is the number of attacked worker machines, and k
is the number of data splits. Then, we propose a probabilistic
mechanism to identify the set of the ℓ attacked worker
machines, and we compute the corresponding probability of
error. Based on this knowledge, the master node can decide
how to distribute the computing efforts in the future.
Related Work. In this work, data is distributed across the
worker machines by adopting a coding strategy, which aims
at offering a suitable data redundancy mechanism robust to
message tampering. In the context of distributed computing,
coded solutions have been shown to provide several benefits.
For instance, coding has been used to: (i) alleviate the impact
of stragglers, i.e., worker machines that are significantly
slow [4], [5], [6]; (ii) reduce the cost of communication
and bandwidth usage [6], [7], [8]; and (iii) ensure that data
remains confidential from the worker machines [9], [1], and
is resilient against attacks from collaborative adversaries [1].

To identify the set of the attacked worker machines, we
propose a probabilistic mechanism inspired by group testing.
Group testing was introduced in [10] and aims at providing
mechanisms to efficiently (i.e., with the least number of tests)
identify a set of defective items in a large pool of items. In
particular, each test consists of a group of items, and the
answer is positive if the group includes at least one defective
item (otherwise the answer is negative). Several classifica-
tions exist for group testing (e.g., adaptive or non-adaptive,
probabilistic or combinatorial); we refer an interested reader
to [11] for a comprehensive overview.
Paper Organization. Section II describes the distributed
computing setting, and formulates the problem. Section III
provides a condition that ensures that the result of the
computing task can be successfully recovered with high
probability. Section IV designs a probabilistic mechanism
to identify the attacked worker machines, and computes the
corresponding error probability.

II. DISTRIBUTED COMPUTING SETUP

We consider a canonical distributed computing scenario,
which consists of a master node and n non-communicating
worker machines. Fig. 1 provides a representation of the
distributed computing setting of interest.

...

W1

W2

Wn�1

Wn

worker 1

worker 2

worker n

a1

a2

an�1

an

x

x

x

x

master
master

B · x

worker (n � 1)

B

Fig. 1: Distributed computing setting in which there are n worker
machines, out of which ℓ are attacked. Wi and ai with i ∈ [1 : n]

are defined in (1) and (2), respectively.

The master node has a matrix B ∈ Fr×c
q , and it seeks

to retrieve the product B · x, where x ∈ Fc×1
q is stored at

each of the n worker machines1. We assume that r ≫ 1,
and hence, in order to speed the process, the effort of the
computing task (i.e., matrix multiplication) can be distributed
across the n worker machines. Each worker machine has a
limited computational capability, which is captured by the
parameter r′ ≤ r. In particular, r′ represents the number of
rows of B that each worker machine can receive and process.

In this setting, among the n worker machines, a subset
of cardinality ℓ of them are attacked by some adversaries
(e.g., viruses). It is assumed that the identity of the ℓ
attacked worker machines is not known by the master node.
In particular, these ℓ adversaries are active, i.e., they mali-
ciously perturb the result of the computing task with some
additive noise. We assume that these ℓ adversaries are non-
colluding/non-communicating, and that noises introduced by
different attackers are independent.

In order to leverage the worker machines, while mitigating
the effect of those that are attacked, the master node employs
a set of encoding functions fi(·) : Fr×c

q → Fr′×c
q for i ∈

[1 : n], to encode and distribute data across the n worker
machines. In particular, the i-th worker machine will receive

Wi = fi(B). (1)

At this point, each worker machine will compute the product
Wi · x, and return this to the master node. If a worker
machine is attacked, then its message sent to the master
node is perturbed and different from Wi · x. We model this
perturbation by an additive noise. Denoting by L the set of
the attacked worker machines, the i-th worker machine sends

ai = Wi · x+ 1L(i)Zi, (2)

to the master node, where: (i) 1L(i) is the indicator function,
i.e., it is 1 if i ∈ L and 0 otherwise, and (ii) Zi ∈ Fr′×1

q

is the noise vector introduced by worker machine i ∈ [1 :
n]. In particular, we assume that the components of Zi, i ∈
[1 : n], are drawn from a uniform distribution, and can be
arbitrarily correlated. However, since the adversaries are not
communicating, we assume that the vectors Zi and Zj are
independent for all (i, j) ∈ [1 : n]2 and i ̸= j.

1Operations take place over finite field of dimension q.

The master node, once it receives the vectors ai, ∀i ∈ [1 :
n], will apply the decoding function g(·) :

(︁
Fr′×1
q

)︁n → Fr×1
q

on them with the goal to retrieve the product B · x.
The distributed setting described above is therefore pa-

rameterized by the tuple (n, ℓ, r, r′). We say that this tuple
is achievable if there exist encoding and decoding functions
fi(·), i ∈ [1 : n], and g(·) such that

g(a1, . . . ,an) = B · x. (3)

In the next section, we provide a condition on (n, ℓ, r, r′) that
indeed ensures that the master node can correctly retrieve
B · x. Towards this end, we propose a linear design for the
encoding and decoding functions fi(·), i ∈ [1 : n], and g(·).

III. CONDITION FOR CORRECTNESS OF THE
DISTRIBUTED COMPUTING TASK

In this section, we derive a sufficient condition on the tuple
(n, ℓ, r, r′), which ensures that the master node can correctly
retrieve the product B · x. In particular, our main result is
stated in the theorem below.

Theorem 1. Consider a distributed computing scenario with
n non-colluding worker machines, out of which ℓ are at-
tacked. Let B =

[︁
BT

1 BT
2 . . . BT

k

]︁T
, where k = ⌈r/r′⌉,

and each Bi, i ∈ [1 : k], has r′ rows2. Then, whenever
k < n−ℓ, the master node can correctly retrieve the product
B · x with high probability over a large enough finite field.

Before delving into the proof of Theorem 1, we state the
following remark, which provides a similar condition as in
Theorem 1 under the assumption of collaborative attackers.

Remark 1. Consider a distributed computing scenario as in
Theorem 1, but with collaborative attackers. Then, the master
node can correctly retrieve the product B · x whenever k <
n − 2ℓ [1]. Thus, it follows that, if we consider k and n
as fixed, then with non-colluding attackers, we can tolerate
twice the number of attacked worker machines than in the
case of collaborative attackers.

The remainder of this section is dedicated to the proof
of Theorem 1. In particular, we next propose a design of
the encoding and decoding functions fi(·), i ∈ [1 : n], and
g(·) in (1) and (3) which ensure that, whenever k < n − ℓ,
then the master node can retrieve the product B · x with high
probability over a large enough finite field.
Encoding Functions. We define

Wi = fi(B) =

k∑︂
j=1

αj−1
i Bj , (4)

where αi’s are the distinct coefficients of the tall Vander-
monde matrix V ∈ Fn×k

q of the form

V =

⎡⎢⎢⎢⎣
1 α1 . . . αk−1

1

1 α2 . . . αk−1
2

...
...

. . .
...

1 αn . . . αk−1
n

⎤⎥⎥⎥⎦ . (5)

2Note that, if kr′ > r, then each of the last kr′ − r rows of Bk will be
a zero vector of dimension 1× c.

Decoding Function. The master node, once it receives the
n vectors ai’s from the worker machines, it selects a subset
of k+1 of them. Since ℓ worker machines are attacked, the
number of good choices (i.e., choices that do not contain
any attacked worker machine) is

(︁
n−ℓ
k+1

)︁
. Thus, we need k ≤

n − ℓ − 1. We now show that, under such condition, the
master node can successfully retrieve the product B · x with
high probability over a large enough finite field. We let U
be the ordered set that contains the k + 1 worker machines
that the master node has selected. Note that U ⊂ [1 : n], and
|U| = k+1. We also define Ṽ ∈ F|U|×|U|

q as a Vandermonde
matrix of a form similar to the one in (5), where we use the
coefficients αi,∀i ∈ U . Since Ṽ is a Vandermonde matrix,
it is invertible and the |U|-th row of its inverse – denoted as
rU – has components from Fq of the form [12]

rUi =
1∏︁

m∈U
m̸=i

(αi − αm)
, (6)

for all i ∈ U . Note that all the components of rU are different
from zero. With this definition, it therefore follows that

rU · Ṽ = e|U|,

where e|U| is a row vector of all zeros except a 1 in position
|U|. Consider the submatrix of Ṽ where only the columns
in [1 : k] are retained. This matrix is also a submatrix of V
in (5), where only the rows indexed by U are retained. We
let VU denote this matrix and, since |U| = k+1, we obtain∑︂

i∈U
rUi α

j−1
i = 0, ∀j ∈ [1 : k]. (7)

Now, the master node, by using (6), performs the following
operation

dU =
∑︂
i∈U

rUi · ai

(a)
=

∑︂
i∈U

rUi (Wi · x+ 1L(i)Zi)

(b)
=

∑︂
i∈U

rUi

⎡⎣⎛⎝ k∑︂
j=1

αj−1
i Bj

⎞⎠ · x+ 1L(i)Zi

⎤⎦
=

k∑︂
j=1

∑︂
i∈U

(︂
rUi α

j−1
i

)︂
Bj · x+

∑︂
i∈U

rUi 1L(i)Zi

(c)
=

∑︂
i∈U

rUi 1L(i)Zi, (8)

where the equalities above follow since: (a) by using the
expression in (2); (b) by using the expression in (4); (c) by
using the expression in (7).

Since all the ri’s in (6), with i ∈ U , are different from
zero, we readily obtain that if U ∩L = ∅, then dU = 0r′×1.
However, we also note that dU can still be equal to the zero
vector even when U ∩ L ≠ ∅. Under our assumption on the
noise vectors and their components in Section II, and over
a finite field of dimension q, the probability of this event to
occur is at most equal to 1/q. Thus, for a large enough field
size (i.e., q), this probability vanishes.

Once the master node selects a set of k + 1 worker
machines for which dU = 0r′×1. in (8), then it can also
correctly retrieve (with probability equal to 1 − 1/q) the
product B · x by using the following procedure. First, the
master node selects any k worker machines from the set
S⊂U , with |S|=k, and stacks together the corresponding k
vectors ai’s. With this, the master node obtains

AS =
[︁
aTi : i ∈ S

]︁T
= (VS ⊗ Ir′)B · x, (9)

where: (i) A =
[︁
aT1 aT2 . . . aTn

]︁T
and AS is the

subvector of A, where only the ai’s such that i ∈ S are
retained; (ii) VS is the submatrix of V in (5) where only the
rows indexed by S are retained; and (iii) ⊗ is the Kronecker
product. Now, the master node premultiplies AS in (9) by
(VS ⊗ Ir′)

−1
=V−1

S ⊗ Ir′ , and gets

g(a1, . . . ,an) =
(︁
V−1

S ⊗ Ir′
)︁
AS = B · x. (10)

This concludes the proof of Theorem 1.
In the analysis above, we have shown that if k < n − ℓ,

then the master node can recover the product B · x correctly
with high probability. Now, a natural question that arises is:
How many operations does the master node need to perform
to recover B · x correctly (with high probability)? The next
lemma answers this question on an average sense, when at
each round the master node uniformly at random selects k+1
indices out of the n available ones and computes (8).

Lemma 2. Assume that, at each round, the master node
uniformly at random selects k + 1 indices out of the n
available ones and computes (8). Then, in order to find a
set of k + 1 worker machines for which dU = 0r′×1 in (8),

the average number of rounds needed is (n
k+1)
(n−ℓ
k+1)

.

The result in Lemma 2 follows since, under the assumption
of uniform random selection of the k+1 indices, the random
variable R representing the number of rounds needed by
the master node to obtain dU = 0r′×1 in (8) is distributed
according to a geometric distribution with parameter p, i.e.,

P [R=r]=(1−p)r−1p, where p =
(n−ℓ
k+1)
(n
k+1)

for which E[R]= 1
p .

IV. GROUP TESTING APPROACH TO IDENTIFY THE
ATTACKED WORKER MACHINES

In this section, we seek to design an algorithm to identify
which are the ℓ worker machines that are attacked out of the n
available ones. Towards this end, we propose a probabilistic
approach inspired by group testing, whose performance is
provided in the following theorem.

Theorem 3. There exists a probabilistic testing mechanism
that allows to identify the ℓ attacked worker machines with
a probability of error Pr{E} such that

Pr{E} ≤ n(1− π⋆)M +
1

q
,

where M is the number of tests and

π⋆ = max
k+1≤t≤n−ℓ

(︁
n−ℓ−1
t−1

)︁(︁
n
t

)︁ .

The remainder of this section is dedicated to the proof
of Theorem 3. In particular, in what follows, we start by
providing some definitions from the group testing literature
that will be used for the proof of Theorem 3.

A. Group Testing Problem

In the classical group testing problem, the goal is to
construct a set of tests that allow to identify the defective
items while minimizing the number of tests M needed. In
particular, each test consists of a group of items, and the
answer is positive if the group includes at least one defective
item. By using our notation, we let n be the total number
of items, and ℓ be the number of defective items. The group
testing problem can be mathematically formulated as follows

y = M⊙ u, (11)

where ⊙ indicates that the arithmetic is Boolean, and where:
(i) y ∈ FM×1

2 is the test vector, i.e., yi = 0 if the i-th test is
negative, and yi = 1 if the i-th test is positive (yi indicates the
i-th component of y, with i ∈ [1 : M]); (ii) M ∈ FM×n

2 is
the so-called contact matrix with Mij = 1 if test i ∈ [1 : M]
contains item j ∈ [1 : n], and Mij = 0 otherwise; (iii)
u ∈ Fn×1

2 is the vector that indicates the defective items
among the population, i.e., ui = 1 if item i ∈ L and ui = 0
otherwise; note that u is an ℓ-sparse vector.

The goal of group testing is to design the contact matrix M
in (11) such that M is as small as possible, and the vector u
can be successfully identified. In group testing, a well-studied
class of contact matrices is the one of disjunct matrices [11].
We next provide the formal definition of such matrices.

Definition 1. Let M =
[︁
m1 m2 . . .mn

]︁
be a Boolean

matrix where mi ∈ FM×1
2 , i ∈ [1 : n]. The matrix M is

called ℓ-disjunct if, for every column mi and every choice of
ℓ columns different from mi, there is at least one row at which
the entry corresponding to mi is 1 and those corresponding
to the other selected ℓ columns are all zeros.

An appealing property of disjunct matrices is that they
allow to distinguish sparse Boolean vectors, as stated in the
following proposition [11].

Proposition 4. Assume that an ℓ-disjunct matrix M with n
columns is used as the contact matrix. Then, the test outcomes
obtained by using the scheme on two distinct ℓ-sparse vectors
of length n must differ in at least one element. In other words,
if u1 and u2 are two distinct ℓ-sparse vectors, then y1 =
M⊙ u1 and y2 = M⊙ u2 differ in at least one element.

Although our problem of identifying the ℓ attacked worker
machines has similarities with group testing, we next high-
light two fundamental differences. These two differences
point out that results derived in group testing can not be
readily applied to our distributed computing setting.
Difference 1. In group testing M = O(n) since, in a naive
approach, each item in the pool can be tested individually. In
this case, after O(n) tests, all the ℓ defective items will be
identified. The optimum solution of the group testing problem
consists of optimizing the size of the pool (as a function of
n and ℓ), in order to minimize M . In our scenario, testing

1 1

0 0
ym ỹm

1/q

1 � 1/q

Fig. 2: Z-channel.

each of the n worker machines separately is not helpful. This
is because, in order to retrieve one possible result of the
computing task (i.e., B · x), the master node needs to collect
together the results returned by k worker machines. In other
words, the size of the pool in our scenario depends on k, and
hence we cannot necessarily use the optimum contact matrix.
Thus, in our scenario we might need a number of tests M that
is larger than n to identify the ℓ attacked worker machines.
Difference 2. In group testing, the probability of error
associated to a given number of tests M is proven to vanish as
the number of items n increases. Differently, in our scenario
the number of worker machines n is a fixed parameter and the
only growing parameter that can offer a vanishing probability
of error is q, i.e., the size of the finite field.

B. Mapping to Group Testing

We now show that our distributed computing setting can be
studied within the framework of group testing. Towards this
end, we leverage the proof of Theorem 1. Specifically, we
use the fact that the master node selects a set U ⊆ [1 : n].
However, different from the proof of Theorem 1, we now
allow |U| > k + 1 (note also |U| ≤ n). In other words, U
becomes the pool of the group testing framework, and hence
we would like to obtain |U| as small as possible (i.e., we seek
to minimize the number of tests that we need for identifying
the attacked worker machines).

Recall that we can obtain dU = 0r′×1 in (8) in two
cases: (i) with probability one when U ∩ L = ∅, and (ii)
with probability 1/q when U ∩ L ≠ ∅. This second case,
by using terminology from the group testing literature [13],
corresponds to a scenario where our test (i.e., computation of
dU) is negative (i.e., dU = 0r′×1) even if our pool (i.e., U)
contains one or more defective items (i.e., attacked worker
machines). This can be modeled as follows. Let y ∈ FM×1

2

be the test vector of the classical group testing problem,
where each test is assumed to be performed over a pool U
as described above (i.e., such that k + 1 ≤ |U| ≤ n). In
particular, we let Um be the pool associated with the m-th
component of y. Now each component of y is passed through
the Z-channel in Fig. 2, whose output is denoted by ỹ. In
other words, for all m ∈ [1 : M], we have:

1) If ym = 0, then ỹm = 0 with probability one. This
corresponds to having dUm =0r′×1 since Um ∩ L=∅.

2) If ym=1, then ỹm=0 with probability 1/q, and ỹm=1
with probability 1 − 1/q. Note that the case ỹm = 0
corresponds to having dUm =0r′×1 even if Um∩L≠∅.

Example. Let us consider a distributed computing system
with n = 20 worker machines, out of which at most ℓ = 2
are attacked. The parameters r and r′ are such that B is split

into k = 3 parts, namely B =
[︁
BT

1 BT
2 BT

3

]︁T
. Note that

we have k = 3 ≤ 17 = n − ℓ − 1. For encoding, we use a
20×3 Vandermonde matrix Vi,j = ij−1, with i ∈ [1 : n] and
j ∈ [1 : k]. For example, the matrix sent to the forth worker
machine is given by W4 = B1 + 4B2 + 16B3 (operations
are performed modulus q, which is a large integer number).

Our group testing approach provides us with a contact
matrix of size M × n. In particular, we let the rows of M
be chosen uniformly among all the binary vectors of length
n = 20 and Hamming weight t = 6. Our choice is motivated
by the fact that the optimum value of t in Theorem 3 (i.e., the
one that maximizes π⋆) is t = 6, which leads to π∗ ≈ 0.16.
This choice will become clear in Section IV-C. Now, let us
consider two rows of such M given by

M =

⎡⎢⎣0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1

...

⎤⎥⎦ .

The first row corresponds to U1 = {2, 5, 6, 11, 13, 18}, and
the second row corresponds to U2 = {6, 10, 12, 13, 18, 20}.
We have to compute the parity defined in (8) for each group.
For the sake of illustration, let us assume L = {12, 20}. Since
U1∩L = ∅, we have dU1 = 0r′×1. However, for the second
group we have U2 ∩ L = {12, 20}. For this group we have
dU2 = rU2

12Z12+rU2
20Z20, where rU2

12 ̸= 0 and rU2
20 ̸= 0. There-

fore, dU2 = 0r′×1 if and only if the noises introduced by the
two attacked worker machines satisfy a parity equation. This,
since the noises are generated independently, occurs with a
probability of at most 1/q. Hence, with high probability, the
test vector will be y =

[︁
0 1 · · ·

]︁T
.

By having more rows of the contact matrix M and the
test vector y, we can apply the group testing algorithm to
identify the attacked worker machines. ■

C. Construction of the Contact Matrix

We now consider a probabilistic construction of the contact
matrix M, and show that it allows to identify the ℓ attacked
worker machines with error probability given in Theorem 3.
Each row of M is chosen uniformly from the set T that
contains all vectors of length n and Hamming weight of t ≥
k+1. In other words, each of the M rows of M corresponds
to a possible choice of the set U in Section IV-B (recall
k + 1 ≤ |U| ≤ n). In particular, for the m-th row of M the
corresponding Um is the set that contains all indexes i ∈ [1 :
n] such that Mmi = 1 (see also the example in Section IV-B).

With such a probabilistic construction of M, we might
have two events E1 and E2 that may prevent the correct
identification of the ℓ attacked worker machines:

• E1: The contact matrix M is not ℓ-disjunct. In fact, note
that Proposition 4 ensures that, if M is ℓ-disjunct, then
it is possible to successfully recover the vector u;

• E2: There exist y1 and y2 that, after being passed
through the Z-channel in Fig. 2, generate the same ỹ.

We start by analyzing the probability associated to E1, which
is referred to as Pr{E1}. Consider the set L of ℓ columns of
M, and any column index i so that i /∈ L. Then, according to
Definition 1, we say that a row of M is good for L and the

choice of i if, at that row, the i-th column of M has a 1 and
all the columns in L \ {i} have zeros. Thus, the probability
that a row that belongs to T is good is

Pr{row is good} =

(︁
n−ℓ−1
t−1

)︁(︁
n
t

)︁ = π. (12)

Note that we need t ≤ n − ℓ. Thus, we have a failure
probability if there are no good rows. Since each row is
selected uniformly at random from T , then all the events
“row is good” in (12) are independent. It therefore follows
that the number of good rows G follows the binomial
distribution with parameters M and π. Thus, by using the
union bound over all possible choices of i (and we have n
of them), we obtain Pr{E1} ≤ nPr {G = 0}, and hence

Pr{E1} ≤ n(1− π)M . (13)

We now analyze the probability of E2, which is referred to
as Pr{E2}. Since y1 and y2 are distinct, then there exists
an index i⋆ such that the i⋆-th component of y1 is 1 and the
i⋆-th component of y2 is zero, or vice versa. According to
the Z-channel in Fig. 2 the 1 can be flipped into a 0 with
probability 1/q, whereas the 0 remains 0. Thus, we have

Pr{E2} = 1/q, (14)

which vanishes as the field size q increases.
The probability of error Pr{E} is hence given by Pr{E1∪

E2} which, by using the union bound can be upper bounded
as Pr{E} ≤ Pr{E1}+ Pr{E2}. Moreover, for given values
of n and ℓ, the value of π in (13) can be chosen to be as
large as possible. This concludes the proof of Theorem 3.

REFERENCES

[1] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded
computing: Optimal design for resiliency, security and privacy,”
arXiv:1806.00939, 2018.

[2] “IBM World Community Grid,” https://www.worldcommunitygrid.org.
[3] “Folding@Home,” https://foldingathome.org.
[4] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient

coding: Avoiding stragglers in distributed learning,” in Proceedings
of the 34th International Conference on Machine Learning (ICML),
vol. 70, 2017, pp. 3368–3376.

[5] Q. Yu, M. A. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Inf. Processing Systems, 2017, pp. 4406–4416.

[6] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Trans. Inf. Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[7] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, 2018.

[8] S. Dutta, V. Cadambe, and P. Grover, “”short-dot”: Computing large
linear transforms distributedly using coded short dot products,” in Pro-
ceedings of the 30th International Conference on Neural Information
Processing Systems, ser. NIPS’16, 2016, pp. 2100–2108.

[9] R. Bitar, P. Parag, and S. E. Rouayheb, “Minimizing latency for secure
coded computing using secret sharing via staircase codes,” CoRR, vol.
abs/1802.02640, 2018.

[10] R. Dorfman, “The detection of defective members of large popula-
tions,” Ann. Math. Statist., vol. 14, no. 4, pp. 436–440, 12 1943.

[11] D.-Z. Du and H. FK, Combinatorial Group Testing And Its Applica-
tions, 2000, vol. 2nd ed. World Scientific Publishing Company.

[12] E. A. Rawashdeh, “A simple method for finding the inverse matrix of
Vandermonde matrix,” Matematički Vesnik, 2018.

[13] M. Cheraghchi, A. Hormati, A. Karbasi, and M. Vetterli, “Group
testing with probabilistic tests: Theory, design and application,” IEEE
Trans. on Inf. Theory, vol. 57, no. 10, pp. 7057–7067, 2011.

https://www.worldcommunitygrid.org
https://foldingathome.org

	Introduction
	Distributed Computing Setup
	Condition for Correctness of the Distributed Computing Task
	Group Testing Approach to Identify the Attacked Worker Machines
	Group Testing Problem
	Mapping to Group Testing
	Construction of the Contact Matrix

	References

